

    
      
          
            
  


Welcome to Allopy’s documentation!

The Allopy toolbox contains functions and methods for financial risk modelling and portfolio
optimization.

Currently, it contains routines for:


	Non-Linear and Linear Optimization


	Financial Metrics
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Getting Started


Python Support

Only Python 3.6 and above are supported. We recommend using the the Anaconda distribution as it bundles all the required software nicely for you.

Otherwise, you’ll have to manage your environment setup (i.e. C-compiler setup and others) yourself if you choose to use pip.

You can download the Anaconda [https://www.anaconda.com/distribution] or the Miniconda [https://docs.conda.io/en/latest/miniconda.html] distribution to get started. Miniconda is more bare-bones (smaller) and is thus faster to download and setup.




Installing the Packages

You can install the packages via conda or pypi. If installing via conda, make sure you have added the conda-forge channel. The details to do so are listed in the Configuring Conda section.

# conda
conda install -c danielbok allopy

# pip
pip install allopy








Configuring Conda

We require packages from both the conda-forge and danielbok channels. Before anything, open your command prompt and type this command in:

conda config --prepend channels conda-forge --append channels danielbok





This command places the conda-forge channel to the top of list while the danielbok channel will be placed at the bottom. It means that whenever you install packages, conda will first look for the package from conda-forge. If it can’t find the package, it will move down the list to find the package in the other channels. Once it finds the package, it will install it. Otherwise, it will throw an error.

You may get an error message that reads

'conda' is not recognized as an internal or external command, operable program or batch file.





In this case, it means that you have not added conda to your path. What you need to do is find the folder you installed the Miniconda or Anaconda package and add them to path.

Assuming you’re using a Windows machine and have installed Miniconda to the folder C:\\Miniconda3\\, there are 2 ways to add conda to your path.


Method 1


	In the Start Menu, search for edit environment variables for your account


	In the top prompt titled User variables for <NTID>, search for PATH


	Double click PATH


	In the Variable Value section, go to the end and add the following line ;C:\Miniconda3\;C:\Miniconda3\condabin.


	Ensure that you have added and not replaced!!


	Click Okay to everything







Method 2

The second way is to run the following line in your command prompt. However this is not recommended.

setx PATH "C:\Miniconda3\;C:\Miniconda3\condabin;%PATH%"










Using Environments

A tutorial on how to manage your conda environment can be found here [https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html].

It is best practice to start your project in a new environment.







          

      

      

    

  

    
      
          
            
  


Examples

A listing of the various ways we can use Allopy. You should able to get the gist of what’s going on here. For more in depth details, check out the API documentation.



	Adding Uncertainty Penalty

	Basic Optimizer Usage (Simple)

	Simulation and Optimization
	Getting Started

	Simulation
	Exploring the Data

	Forming the Models

	Fitting the Model

	Fitting the Copula

	Simulating Future returns

	Removing Outliers

	Calibrating the Moments of the Cube





	Optimization





	Regret Optimization
	Regret
	Distance function

	Linear Approximations





	Example













          

      

      

    

  

    
      
          
            
  


Adding Uncertainty Penalty

This tutorial will guide you on how to add the uncertainty penalty to the PortfolioOptimizer classes. As of writing the two optimizer class that supports penalty functions are PortfolioOptimizer and ActivePortfolioOptimizer.

To start off, let’s load in all the required packages.


[1]:






from muarch.funcs import get_annualized_sd

from allopy import OptData, PortfolioOptimizer
from allopy.datasets import load_monte_carlo
from allopy.penalty import UncertaintyPenalty

import numpy as np


np.set_printoptions(linewidth=200)







Let’s load in a sample dataset.


[2]:






data = OptData(load_monte_carlo(), 'q')
data.shape








[2]:







(80, 10000, 9)






We’ll only use the first 7 asset classes. For them we will also set the lower and upper bounds respectively.


[3]:






opt = PortfolioOptimizer(data.take_assets(7))
opt.set_bounds(
    0,  # lower bounds all set  to 0
    [0.4, 0.3, 0.13, 0.11, 0.25, 0.04, 0.05]  # custom upper bounds
)








[3]:







<allopy.optimize.portfolio.portfolio.optimizer.PortfolioOptimizer at 0x263fc627208>






For simplicity, we will use the current volatility as the uncertainty vector. But remember, you can set a uncertainty matrix for the penalty class.


[4]:






vol = get_annualized_sd(data, 'quarter')
vol.round(4)








[4]:







array([0.1849, 0.2648, 0.2026, 0.0961, 0.078 , 0.1403, 0.0428, 0.0613, 0.185 ])







[5]:






penalty = UncertaintyPenalty(vol, lambda_=1.0)
print(penalty)













UncertaintyPenalty(
    lambda=1.0,
    uncertainty=[[0.1849, 0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.2648, 0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.2026, 0.    , 0.    , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.0961, 0.    , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.078 , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.    , 0.1403, 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.0428, 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.0613, 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.185 ]],
    method=direct
)






Note that we have transformed the vector to a diagonal matrix. Now, let’s add the penalty to the optimizer.


[6]:






try:
    opt.penalty = penalty
except AssertionError as e:
    print("An error has occurred:", '. '.join(e.args))













An error has occurred: dimension of the penalty does not match the data






Oops, why is there an error? It’s because the penalty vector has a dimension of 9, which means that there should be 9 asset classes. However, at the top, we have chosen to use only the first 7 asset classes. To fix that, we must initialize the UncertaintyPenalty correctly. Let’s do it again.


[7]:






penalty = UncertaintyPenalty(vol[:7], lambda_=1.0)
print(penalty)













UncertaintyPenalty(
    lambda=1.0,
    uncertainty=[[0.1849, 0.    , 0.    , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.2648, 0.    , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.2026, 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.0961, 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.078 , 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.    , 0.1403, 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.0428]],
    method=direct
)







[8]:






opt.penalty = penalty
optimal_weights = opt.maximize_sharpe_ratio()
optimal_weights.round(4)








[8]:







array([0.2678, 0.1522, 0.13  , 0.11  , 0.25  , 0.04  , 0.05  ])






That’s it, we’re done. To remove any penalty you have set by accident, set it to None.


[9]:






opt.penalty = None











          

      

      

    

  

    
      
          
            
  


Basic Introduction to BaseOptimizer

In this tutorial, we show how to use the BaseOptimizer to optimize a hypothetical portfolio.

In this portfolio, we have 2 assets with different expected returns and volatility. Our task is to find the optimal weights subject to some risk constraints. Let’s assume Asset \(A\) has an annual return of 12% with volatility at 4%, Asset \(B\) has an historical annual returns of 4% with volatility at 0.14% and both of them has a covariance of 0.2%. We start off by simulating 500 instances of their one-year ahead returns.


[1]:






import numpy as np
from scipy.stats import multivariate_normal as mvn

assets_mean = [0.12, 0.04]  # asset mean returns vector
assets_std = [
    [0.04, 0.002],
    [0.002, 0.0014]
]  # asset covariance matrix

# hypothetical returns series
returns = mvn.rvs(mean=assets_mean, cov=assets_std, size=500, random_state=88)







Now that we have the returns series, our job is to optimize the portfolio where our objective is to maximize the expected returns subject to certain risk budgets. Let’s assume we are only comfortable with taking a volatility of at most 10%.

Our problem is thus given by


\[\begin{split}\begin{gather*}
    \underset{\mathbf{w}}{\max} \frac{1}{N}\sum_i^2 w_i \cdot r_{i} \\
    s.t. \\
    \sqrt{\frac{\sum_n^N \left(w_i \cdot r_{i, n} - \frac{1}{N}\sum_n^N\sum_i^2 w_i \cdot r_{i, n} \right)^2}{N-1}} \leq 0.1
\end{gather*}\end{split}\]

Looks complicated but let’s simplify it with some vector notations. Allowing \(r_n\) to be the returns at trial \(n\) after accounting for the weights (\(w\)), \(\mu\) to be the mean return across trials, the problem can be specified as


\[\begin{split}\begin{gather*}
    \underset{\mathbf{w}}{\max} \frac{\mathbf{w} \cdot \mathbf{r}}{N} \\
    s.t. \\
    \sqrt{\frac{\sum_n^N \left(r_n - \mu \right)^2}{N-1}} \leq 0.1
\end{gather*}\end{split}\]


[2]:






from allopy.optimize import BaseOptimizer


def objective(w):
    return (returns @ w).mean()


def constraint(w):
    # we need to convert the constraint to standard form. So c(w) - K <= 0
    return (returns @ w).std() - 0.1


prob = BaseOptimizer(2)  # initialize the optimizer with 2 asset classes

# set the objective function
prob.set_max_objective(objective)

# set the inequality constraint function
prob.add_inequality_constraint(constraint)

# set lower and upper bounds to 0 and 1 for all free variables (weights)
prob.set_bounds(0, 1)

# set equality matrix constraint, Ax = b. Weights sum to 1
prob.add_equality_matrix_constraint([[1, 1]], [1])

sol = prob.optimize()
print('Solution: ', sol)













Solution:  [0.47209577 0.52790423]






Don’t be alarmed if you noticed the print outs, Setting gradient for .... By default, you actually have to set the gradient and possibly the hessian for your function. In fact, you could if you wanted to. This will give you more control over the optimization program. However, understanding that it may be tedious, we have opted to set the gradient for you if you didn’t do so.

This assumes you’re using a gradient based optimizer. In case you did, the default gradient is set using a second-order numerical derivative.

Also notice the solution given above. This means that the optimizer has successfully found the solution. To get even more information, we can use the .summary() method as seen below.


[3]:






prob.summary()








[3]:






Portfolio Optimizer

Algorithm: Sequential Quadratic Programming (SQP) (local, derivative)




    
        	Problem Setup
        	Value
        	Optimizer Setup
        	Value
    

    	objective	maximize	xtol_abs	1e-06
	n_var	2	xtol_rel	0.0
	n_eq_con	1	ftol_abs	1e-06
	n_ineq_con	1	ftol_rel	0.0
			max_eval	100000
			stop_val	inf






    
        	Lower Bound
        	Upper Bound
    

    	0.0	6
 	0.0	6





Results



    Program found a solution
    
        Solution: [0.472096, 0.527904]
    

    The following inequality constraints were tight: 
	  1: constraint











          

      

      

    

  

    
      
          
            
  


Simulation and Optimization

We’ll go through the entire simulation and optimization process in this tutorial. The general procedure on optimizing the portfolio is as follows:


	Determine the asset classes (and thus the dataset used)


	Simulate the returns


	Run an optimization program on the simulated cube (tensor)




More details on each section will be covered.


Getting Started

To start off, install the required packages by running the following commands in your command prompt.

Feel free to name my_env with whatever you like.

conda config --prepend channels conda-forge
conda config --append channels bashtage
conda config --append channels danielbok

conda create -y -n my_env python=3.7 muarch copulae allopy pandas

# you may need to init if you're using conda for the first time
conda init --all

conda activate my_env





Remember to activate the environment.




Simulation

For the simuluation The simulation follows the following procedure:


	Load the returns dataset of the asset classes you want to simulate


	For each asset class, specify the AR-GARCH model


	Fit the AR-GARCH models with the log-returns data


	Fit the standardized residuals of the AR-GARCH models to a Student Copula


	Overwrite the correlation matrix of the Student Copula with the log-returns correlation


	Simulate future returns using the AR-GARCH models with distributions “inversed” from the copula


	Truncate then calibrate the first 2 moments (returns and vol) of the cube





Exploring the Data

Let’s start by loading and exploring the sample policy index dataset. These are the monthly returns for the 7 assets we will simulate. The data ranges from 01 Jan 1985 to 01 Oct 2017.


[1]:






import numpy as np
from allopy.datasets import load_index

returns = load_index()
log_returns = (returns + 1).apply(np.log)
_, num_assets = log_returns.shape

log_returns.head()








[1]:
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Regret Optimization

Regret optimization is a technique to optimize a portfolio given that one is uncertain about future prospects. Since one must eventually settle for a single portfolio out of all the possible scenarios, the best portfolio in this case is determine by the one that will have the least regret. This will be elaborated further

In general, this is a 2-stage optimization. The algorithm works as such,


	Generate several possible scenarios in the future


	For each scenario, give it a discrete probability of occurrence


	These probabilities must sum to 1 across all scenarios!






	In the first stage, derive the optimal weights for the portfolio for each scenario


	If there are 5 scenarios, there will be 5 sets of these weights


	Thus a model with 5 scenarios and 3 assets will yield a 5 x 3 matrix






	In the second stage, solve for the minimal regret portfolio, these time using the previous sets optimal weights


	You will receive the final set of of weights here (a 1 x 3 vector)









Regret

Regret is defined as the cost of choosing one portfolio (which is optimal for a scenario) when another different scenario occurs instead. Functionally, the simplest mathematical formuation is


\[D(R(w_s) - R(w_o))\]

where \(D\) is a distance function, \(R\) is the profit function, \(w_s\) is the optimal weights for scenario \(s\) and \(w_o\) is the “optimal” weights that was chosen. Thus to solve for the minimal regret function, the exact problem formulation is as listed below


\[\underset{w}{\min} \sum_s^S p_s D(R(w_s) - R(w))\]

where \(p_s\) is the probability of scenario \(s\) occurring.


Distance function

The distance function could be anything that makes sense. Some common examples include a linear function, absolute function or quadratic function. Different functions will penalise regret differently and lead to different outcomes. For example, if a portfolio that does not have a wide swings in terms of objectives is desired, a quadratic function will work better than a linear function.


\[\begin{split}\begin{align}
\text{Assuming} \quad R(w) &\geq 1 \quad \forall w \in W \\
[R(w_s) - R(w_o)]^2 &\geq R(w_s) - R(w_o)
\end{align}\end{split}\]




Linear Approximations

Suppose we have convex objective and constraints functions for the first stage, we alter the second stage optimization a little. The outcome will be similar but it will give another nice interpretation of the results which will be explained later. Ideally these functions should be strictly linear. However, in practice, the differences are usually negligible.

Suppose we want to maximize the returns of the portfolio subject to some CVaR constraints. For simplicity, the returns function will be \(R\) and CVaR constraint functions will be \(C\). Thus our first stage optimization will be

For every single scenario \(s\) in \(S\)


\[\begin{split}\underset{w_s}{\max} R(w_s) \\
\text{subject to} \\
C_s(w_s) \geq 0 \\
\sum_i w_{s, i} = 1 \\
0 \leq w \leq 1 \quad \forall w \in w_s\end{split}\]

From this we would get


\[\begin{split}W =
\begin{bmatrix}
    w_{1, 1} & w_{1, 2} & \dots  & w_{1, n} \\
    \vdots   & \vdots   & \ddots & \vdots   \\
    w_{s, 1} & w_{s, 2} & \dots  & w_{s, n}
\end{bmatrix}\end{split}\]

where \(s\) is the number of scenarios adn \(n\) is the number of assets. We would then tweak our second (Regret) optimization to


\[\begin{split}\underset{a}{\min} \sum_s^S p_s D(R(w_s) - R(W \cdot a)) \\
\text{subject to} \\
\sum_s^S a_s = 1\end{split}\]

The solution of the problem, \(a\), will represent the proportion of importance that is taken from each scenario. Suppose there are 3 scenarios - X, Y, Z and that the final proportion derived is [0.2, 0.3, 0.5]. This means that 20% of the weights are taken from X, 30% from Y and 50% from Z. In essence, it weights the importance of each scenario for the final outcome.

To get the final weights, simply do a dot product of \(W \cdot a\).






Example

We will run through the Regret Optimization using both the RegretOptimizer and PortfolioRegretOptimizer classes. The PortfolioRegretOptimizer is a helper class that has several common built-in problems within itself. Underneath the hood, it uses the RegretOptimizer for the same operations. The RegretOptimizer is the more flexible tool that is useful for modelling more exotic scenarios.


[1]:






import numpy as np
from muarch.calibrate import calibrate_data

from allopy import OptData, RegretOptimizer
from allopy.datasets import load_monte_carlo








[2]:






# Generate different scenarios
num_assets = 7
num_scenarios = 4
scenario_probability = [0.57, 0.1, 0.14, 0.19]

main_adjustments = np.array([
    [ 0.0061,  0.0601,  0.0466,  0.0051, -0.0066, -0.0013, -0.0026],
    [ 0.0642,  0.0537,  0.0818,  0.0713,  0.0177,  0.0099,  0.0116],
    [-0.0219, -0.0381, -0.0059,  0.0242, -0.0153,  0.0164, -0.001 ],
    [-0.0333, -0.0617, -0.0405, -0.0251,  0.0084,  0.0054, -0.0035]
])

cvar_adjustments = np.array([
    [-0.0436,  0.0586, -0.0081,  0.0051, -0.0078,  0.0135, -0.0081],
    [ 0.0662,  0.079 ,  0.0896,  0.0501, -0.0265, -0.0572,  0.0025],
    [-0.1192, -0.1701, -0.1143,  0.0736, -0.0831,  0.0134, -0.0047],
    [-0.1728, -0.257 , -0.1933, -0.1432,  0.0342,  0.0079,  0.003 ]
])


def make_scenarios(adjustments, truncate=False):
    scenarios = []
    for adj in adjustments:
        data = OptData(load_monte_carlo()[..., :num_assets], 'quarterly')

        if truncate:  # cut for CVaR
            data = data.cut_by_horizon(3)

        scenarios.append(data.calibrate_data(adj))

    return scenarios

main_scenarios = make_scenarios(main_adjustments)
cvar_scenarios = make_scenarios(cvar_adjustments, True)








[3]:






# objective and constraint functions

def make_max_returns_obj_fun(cube: OptData):
    def obj_fun(w):
        return 1e2 * cube.expected_return(w, True)

    return obj_fun


def make_cvar_constraint_fun(cube: OptData, limit: float):
    def cvar_fun(w):
        return 1e3 * (limit - cube.cvar(w, True, 5.0))

    return cvar_fun


# limits and bounds
lb = [0, 0, 0.13, 0.11, 0, 0.05, 0.04]
ub = [1, 0.18, 0.13, 0.11, 1, 0.05, 0.04]

cvar_limit = [-0.34, -0.253, -0.501, -0.562]








[4]:






# optimization model formulation and execution
opt = RegretOptimizer(num_assets, num_scenarios, scenario_probability, sum_to_1=True)
opt.set_bounds(lb, ub)

obj_funcs = []
constraint_funcs = []
for m, c, limit in zip(main_scenarios, cvar_scenarios, cvar_limit):
    obj_funcs.append(make_max_returns_obj_fun(m))
    constraint_funcs.append(make_cvar_constraint_fun(c, limit))

opt.set_max_objective(obj_funcs)
opt.add_inequality_constraint(constraint_funcs)

final_weights = opt.optimize()







You can get the summary of the results. The first table show the optimal weight for each scenario. The second shows the proportion of each scenario and is only available when the approx option is set to True. The final table shows the final optimal weights.


[5]:






opt.summary()








[5]:








     	     	Scenario_1 	Scenario_2 	Scenario_3 	Scenario_4



  	Asset_1   	0.2499     	0.3495     	0.1003     	0.0000



  	Asset_2   	0.1800     	0.0946     	0.0000     	0.0000



  	Asset_3   	0.1300     	0.1300     	0.1300     	0.1300



  	Asset_4   	0.1100     	0.1100     	0.1100     	0.1100



  	Asset_5   	0.2401     	0.2259     	0.5697     	0.6700



  	Asset_6   	0.0500     	0.0500     	0.0500     	0.0500



  	Asset_7   	0.0400     	0.0400     	0.0400     	0.0400






  	   	Scenario  	Proportion (%)



  	0 	Scenario_1     	68.5900



  	1 	Scenario_2     	0.0000



  	2 	Scenario_3     	0.0000



  	3 	Scenario_4     	47.5900






     	     	Weight



  	Asset_1 	0.1714



  	Asset_2 	0.1235



  	Asset_3 	0.1510



  	Asset_4 	0.1278



  	Asset_5 	0.4835



  	Asset_6 	0.0581



  	Asset_7 	0.0465







The PortfolioRegretOptimizer contains a number of common optimization regimes with respect to regret optimization. We can apply the same optimization we did with the maximize_returns() method.


[6]:






from allopy import PortfolioRegretOptimizer

opt = PortfolioRegretOptimizer(main_scenarios,
                               cvar_scenarios,
                               scenario_probability,
                               rebalance=True,
                               sum_to_1=True,
                               time_unit="quarterly")

opt.set_bounds(lb, ub)
opt.maximize_returns(max_cvar=cvar_limit)
opt.summary()








[6]:








     	     	Scenario_1 	Scenario_2 	Scenario_3 	Scenario_4



  	Asset_1   	0.2499     	0.3494     	0.1003     	0.0000



  	Asset_2   	0.1800     	0.0947     	0.0000     	0.0000



  	Asset_3   	0.1300     	0.1300     	0.1300     	0.1300



  	Asset_4   	0.1100     	0.1100     	0.1100     	0.1100



  	Asset_5   	0.2401     	0.2259     	0.5697     	0.6700



  	Asset_6   	0.0500     	0.0500     	0.0500     	0.0500



  	Asset_7   	0.0400     	0.0400     	0.0400     	0.0400






  	   	Scenario  	Proportion (%)



  	0 	Scenario_1     	68.5900



  	1 	Scenario_2     	0.0000



  	2 	Scenario_3     	0.0000



  	3 	Scenario_4     	47.5900






     	     	Weight



  	Asset_1 	0.1714



  	Asset_2 	0.1235



  	Asset_3 	0.1510



  	Asset_4 	0.1278



  	Asset_5 	0.4835



  	Asset_6 	0.0581



  	Asset_7 	0.0465
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API

The optimizers are the classes responsible for finding the ideal weights. The underlying optimizer is built from the nlopt [https://nlopt.readthedocs.io/en/latest/] package. The optimizers are classified into 2 categories, Deterministic and Discrete State Uncertainty.

Deterministic optimizers are suitable for instances where the problem scenario is known. For example, if it is expected to only have one market scenario, then it is suitable to use the optimizers under this category.

Discrete State Uncertainty optimizers are suitable for instances where there are multiple problem scenarios and when a discrete probability can be assigned to each scenario. For instance, there could be 3 scenarios that would happen in the future. Baseline at 50%, Upside at 30% and Downside at 20%. In this case, this class of optimizers will be most suitable to model the optimization problem.

Presently, Continuous State Uncertainty optimizers are not implemented in the package.


Deterministic Optimizers


	Base Optimizer

	Portfolio Optimizer

	Active Portfolio Optimizer






Discrete State Uncertainty Optimizers


	Regret Optimizer

	Portfolio Regret Optimizer

	Active Portfolio Regret Optimizer






Algorithms

All algorithms in allopy follows a particular naming pattern. Specifically, the names are of the form {G,L}{N,D}_xxx where G/L denotes if the algorithm is global or local optimization, N/D denotes if the algorithm is a derivative-free or gradient-based algorithm and xxx is the name of the algorithm.

For example, LD_SLSQP refers to the Sequential Quadratic Least Squares Programming. This is a local and derivative free algorithm.

Many algorithms have variants and some, such as AUGLAG, may not have the construct described above. In using any of these algorithms, consult a textbook or Wikipedia to understand if it is fit for your purpose.

A list of the algorithms is given below. Check out the docs at nlopt for more information [https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms].


	GN_DIRECT_L


	GN_DIRECT_L_RAND


	GN_DIRECT_NOSCAL


	GN_DIRECT_L_NOSCAL


	GN_DIRECT_L_RAND_NOSCAL


	GN_ORIG_DIRECT


	GN_ORIG_DIRECT_L


	GD_STOGO


	GD_STOGO_RAND


	LD_LBFGS_NOCEDAL


	LD_LBFGS


	LN_PRAXIS


	LD_VAR1


	LD_VAR2


	LD_TNEWTON


	LD_TNEWTON_RESTART


	LD_TNEWTON_PRECOND


	LD_TNEWTON_PRECOND_RESTART


	GN_CRS2_LM


	GN_MLSL


	GD_MLSL


	GN_MLSL_LDS


	GD_MLSL_LDS


	LD_MMA


	LN_COBYLA


	LN_NEWUOA


	LN_NEWUOA_BOUND


	LN_NELDERMEAD


	LN_SBPLX


	LN_AUGLAG


	LD_AUGLAG


	LN_AUGLAG_EQ


	LD_AUGLAG_EQ


	LN_BOBYQA


	GN_ISRES


	AUGLAG


	AUGLAG_EQ


	G_MLSL


	G_MLSL_LDS


	LD_SLSQP


	LD_CCSAQ


	GN_ESCH


	GN_AGS
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Base Optimizer

The BaseOptimizer is the underlying object that is used to optimize anything. All other optimizers inherits this class. It offers the most flexibility in modelling.


	
class allopy.optimize.BaseOptimizer(n, algorithm=40, *args, **kwargs)

	
	
__init__(n, algorithm=40, *args, **kwargs)

	The BaseOptimizer is the raw optimizer with minimal support. For advanced users, this class will provide
the most flexibility. The default algorithm used is Sequential Least Squares Quadratic Programming.


	Parameters

	
	n (int) – number of assets


	algorithm (int or str) – the optimization algorithm


	args – other arguments to setup the optimizer


	kwargs – other keyword arguments













	
add_equality_constraint(fn, tol=None)

	Adds the equality constraint function in standard form, A = b. If the gradient of the constraint function
is not specified and the algorithm used is a gradient-based one, the optimizer will attempt to insert a smart
numerical gradient for it.


	Parameters

	
	fn (Callable[[ndarray], float]) – Constraint function


	tol (float, optional) – A tolerance in judging feasibility for the purposes of stopping the optimization






	Returns

	Own instance



	Return type

	BaseOptimizer










	
add_equality_matrix_constraint(Aeq, beq, tol=None)

	Sets equality constraints in standard matrix form.

For equality, \(\mathbf{A} \cdot \mathbf{x} = \mathbf{b}\)


	Parameters

	
	Aeq – Equality matrix. Must be 2 dimensional


	beq – Equality vector or scalar. If scalar, it will be propagated


	tol – A tolerance in judging feasibility for the purposes of stopping the optimization






	Returns

	Own instance



	Return type

	BaseOptimizer










	
add_inequality_constraint(fn, tol=None)

	Adds the equality constraint function in standard form, A <= b. If the gradient of the constraint function is
not specified and the algorithm used is a gradient-based one, the optimizer will attempt to insert a smart
numerical gradient for it.


	Parameters

	
	fn (Callable[[ndarray], float]) – Constraint function


	tol (float, optional) – A tolerance in judging feasibility for the purposes of stopping the optimization






	Returns

	Own instance



	Return type

	BaseOptimizer










	
add_inequality_matrix_constraint(A, b, tol=None)

	Sets inequality constraints in standard matrix form.

For inequality, \(\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}\)


	Parameters

	
	A – Inequality matrix. Must be 2 dimensional.


	b – Inequality vector or scalar. If scalar, it will be propagated.


	tol – A tolerance in judging feasibility for the purposes of stopping the optimization






	Returns

	Own instance



	Return type

	BaseOptimizer










	
property lower_bounds

	Lower bound of each variable






	
property model

	The underlying optimizer. Use this if you need to access lower level settings for the optimizer






	
optimize(x0=None, *args, initial_solution='random', random_state=None)

	Runs the optimizer and returns the optimal results if any.

Notes

An initial vector must be set and the quality of any solution (especially gradient-based ones) will lie
on this initial vector. Alternatively, the optimizer will ATTEMPT to randomly generate a feasible one if
the initial_solution argument is set to “random”. However, there is no guarantee in the feasibility.
In general, it is a tough problem to find a feasible solution in high-dimensional spaces, much more
an optimal one. Thus use the random initial solution at your own risk.

The following lists the options for finding an initial solution for the optimization problem. It is best if
the user supplies an initial value instead of using the heuristics provided if the user already knows the
region to search.


	random
	Randomly generates “bound-feasible” starting points for the decision variables. Note
that these variables may not fulfil the other constraints. For problems where the bounds have been
tightly defined, this often yields a good solution.



	min_constraint_norm
	Solves the optimization problem listed below. The objective is to minimize the \(L_2\) norm of the
constraint functions while keeping the decision variables bounded by the original problem’s bounds.


\[\begin{split}\min | constraint |^2 \\
s.t. \\
LB \leq x \leq UB\end{split}\]






	Parameters

	
	x0 (iterable float) – Initial vector. Starting position for free variables. In many cases, especially for derivative-based
optimizers, it is important for the initial vector to be already feasible.


	args – other arguments to pass into the optimizer


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied. See notes on
Initial Solution for more information


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Values of free variables at optimality



	Return type

	ndarray










	
remove_all_constraints()

	Removes all constraints






	
set_bounds(lb, ub)

	Sets the lower and upper bound


	Parameters

	
	lb (Union[ndarray, Iterable, int, float, complex]) – Vector of lower bounds. If array, must be same length as number of free variables. If float or
int, value will be propagated to all variables.


	ub (Union[ndarray, Iterable, int, float, complex]) – Vector of upper bounds. If array, must be same length as number of free variables. If float or
int, value will be propagated to all variables.






	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_epsilon(eps)

	Sets the step difference used when calculating the gradient for derivative based optimization algorithms.
This can ignored if you use a derivative free algorithm or if you specify your gradient specifically.


	Parameters

	eps (float) – The gradient step



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_epsilon_constraint(eps)

	Sets the tolerance for the constraint functions


	Parameters

	eps (float) – Tolerance



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_ftol_abs(tol)

	Set absolute tolerance on objective function value


	Parameters

	tol (float) – absolute tolerance of objective function value



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_ftol_rel(tol)

	Set relative tolerance on objective function value


	Parameters

	tol (float) – Absolute relative of objective function value



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_lower_bounds(lb)

	Sets the lower bounds


	Parameters

	lb (Union[ndarray, Iterable, int, float, complex]) – Vector of lower bounds. If vector, must be same length as number of free variables. If float or
int, value will be propagated to all variables.



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_max_objective(fn, *args)

	Sets the optimizer to maximize the objective function. If gradient of the objective function is not set and the
algorithm used to optimize is gradient-based, the optimizer will attempt to insert a smart numerical gradient
for it.


	Parameters

	
	fn (Callable) – Objective function


	args – Other arguments to pass to the objective function. This can be ignored in most cases






	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_maxeval(n)

	Sets maximum number of objective function evaluations.

After maximum number of evaluations, optimization will stop. Set 0 or negative for no limit.


	Parameters

	n (int) – maximum number of evaluations



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_min_objective(fn, *args)

	Sets the optimizer to minimize the objective function. If gradient of the objective function is not set and the
algorithm used to optimize is gradient-based, the optimizer will attempt to insert a smart numerical gradient
for it.


	Parameters

	
	fn (Callable) – Objective function


	args – Other arguments to pass to the objective function. This can be ignored in most cases






	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_stopval(stopval)

	Stop when an objective value of at least/most stopval is found depending on min or max objective


	Parameters

	stopval (float) – Stopping value



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_upper_bounds(ub)

	Sets the upper bound


	Parameters

	ub (Union[ndarray, Iterable, int, float, complex]) – Vector of lower bounds. If vector, must be same length as number of free variables. If float or
int, value will be propagated to all variables.



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_xtol_abs(tol)

	Sets absolute tolerances on optimization parameters.

The tol input must be an array of length n specified in the initialization. Alternatively, pass a single
number in order to set the same tolerance for all optimization parameters.


	Parameters

	tol ({float, ndarray}) – Absolute tolerance for each of the free variables



	Returns

	Own instance



	Return type

	BaseOptimizer










	
set_xtol_rel(tol)

	Sets relative tolerances on optimization parameters.

The tol input must be an array of length n specified in the initialization. Alternatively, pass a single
number in order to set the same tolerance for all optimization parameters.


	Parameters

	tol (float or ndarray, optional) – relative tolerance for each of the free variables



	Returns

	Own instance



	Return type

	BaseOptimizer










	
property summary

	Prints a summary report of the optimizer






	
property upper_bounds

	Upper bound of each variable
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Portfolio Optimizer

The PortfolioOptimizer inherits the BaseOptimizer to add several convenience methods. These methods include common optimization programs which would be tedious to craft with the BaseOptimizer over and over again. Of course, as an extension, it can do anything that the BaseOptimizer can. However, if that’s the goal, it would be better to stick with the BaseOptimizer to reduce confusion when reading the code.

Using the PortfolioOptimizer assumes that there is a returns stream from which all other asset classes are benchmarked against. This is the first index in the assets axis.

For example, if you have a benchmark (beta) returns stream, 9 other asset classes over 10000 trials and 40 periods, the simulation tensor will be 40 x 10000 x 10 with the first asset axis being the returns of the benchmark. In such a case, the active portfolio optimizer can be used to optimize the portfolio relative to the benchmark.

The PortfolioOptimizer houses the following convenience methods:


	maximize_returns

	Maximize the returns of the portfolio. You may put in volatility or CVaR constraints for this procedure.



	minimize_volatility

	Minimizes the total portfolio volatility



	minimize_cvar

	Minimizes the conditional value at risk (expected shortfall of the portfolio)



	maximize_sharpe_ratio

	Maximizes the Sharpe ratio of the portfolio.






	
class allopy.optimize.PortfolioOptimizer(data, algorithm=40, cvar_data=None, rebalance=False, time_unit='quarterly', sum_to_1=True, *args, **kwargs)

	
	
__init__(data, algorithm=40, cvar_data=None, rebalance=False, time_unit='quarterly', sum_to_1=True, *args, **kwargs)

	PortfolioOptimizer houses several common pre-specified optimization routines.

PortfolioOptimizer assumes that the optimization model has no uncertainty. That is, the portfolio is
expected to undergo a single fixed scenario in the future. By default, the PortfolioOptimizer will
automatically add an equality constraint that forces the portfolio weights to sum to 1.


	Parameters

	
	data ({ndarray, OptData}) – The data used for optimization


	algorithm ({int, string}) – The algorithm used for optimization. Default is Sequential Least Squares Programming


	cvar_data ({ndarray, OptData}) – The cvar_data data used as constraint during the optimization. If this is not set, will default to being a
copy of the original data that is trimmed to the first 3 years. If an array like object is passed in,
the data must be a 3D array with axis representing time, trials and assets respectively. In that
instance, the horizon will not be cut at 3 years, rather it’ll be left to the user.


	rebalance (bool, optional) – Whether the weights are rebalanced in every time instance. Defaults to False


	time_unit ({int, 'monthly', 'quarterly', 'semi-annually', 'yearly'}, optional) – Specifies how many units (first axis) is required to represent a year. For example, if each time period
represents a month, set this to 12. If quarterly, set to 4. Defaults to 12 which means 1 period represents
a month. Alternatively, specify one of ‘monthly’, ‘quarterly’, ‘semi-annually’ or ‘yearly’


	sum_to_1 – If True, portfolio weights must sum to 1.


	args – other arguments to pass to the BaseOptimizer


	kwargs – other keyword arguments to pass into OptData (if you passed in a numpy array for data) or into
the BaseOptimizer









See also


	BaseOptimizer
	Base Optimizer



	OptData
	Optimizer data wrapper












	
maximize_returns(max_vol=None, max_cvar=None, x0=None, *, percentile=5.0, tol=0.0, initial_solution='random', random_state=None)

	Optimizes the expected returns of the portfolio subject to max volatility and/or cvar constraint.
At least one of the tracking error or cvar constraint must be defined.

If max_vol is defined, the tracking error will be offset by that amount. Maximum tracking error is usually
defined by a positive number. Meaning if you would like to cap tracking error to 3%, max_te should be set to
0.03.


	Parameters

	
	max_vol (scalar, optional) – Maximum tracking error allowed


	max_cvar (scalar, optional) – Maximum cvar_data allowed


	x0 (ndarray) – Initial vector. Starting position for free variables


	percentile (float) – The CVaR percentile value. This means to the expected shortfall will be calculated from values
below this threshold


	tol (float) – A tolerance for the constraints in judging feasibility for the purposes of stopping the optimization


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray










	
maximize_sharpe_ratio(x0=None, *, initial_solution='random', random_state=None)

	Maximizes the sharpe ratio the portfolio.


	Parameters

	
	x0 (array_like, optional) – Initial vector. Starting position for free variables


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None


	initial_solution – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_cvar(min_ret=None, x0=None, *, percentile=5.0, tol=0.0, initial_solution='random', random_state=None)

	Maximizes the conditional value at risk of the portfolio. The present implementation actually minimizes the
expected shortfall. Maximizing this value means you stand to lose less (or even make more) money during
bad times

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are at least
as large as the value specified (if possible).


	Parameters

	
	min_ret (float, optional) – The minimum returns required for the portfolio


	x0 (ndarray) – Initial vector. Starting position for free variables


	percentile (float) – The CVaR percentile value for the objective. This means to the expected shortfall will be calculated
from values below this threshold


	tol (float) – A tolerance for the constraints in judging feasibility for the purposes of stopping the optimization


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_volatility(min_ret=None, x0=None, *, tol=0.0, initial_solution='random', random_state=None)

	Minimizes the tracking error of the portfolio

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are
at least as large as the value specified (if possible).


	Parameters

	
	min_ret (float, optional) – The minimum returns required for the portfolio


	x0 (ndarray) – Initial vector. Starting position for free variables


	tol (float) – A tolerance for the constraints in judging feasibility for the purposes of stopping the optimization


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray
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Active Portfolio Optimizer

The ActivePortfolioOptimizer inherits the BaseOptimizer to add several convenience methods. These methods include common optimization programs which would be tedious to craft with the BaseOptimizer over and over again. Of course, as an extension, it can do anything that the BaseOptimizer can. However, if that’s the goal, it would be better to stick with the BaseOptimizer to reduce confusion when reading the code.

ActivePortfolioOptimizer houses the following convenience methods:


	maximize_eva

	Maximize the expected value added of the portfolio. The objective function is the same with maximize returns as it just maximizes the total returns. For risk constraints, this method by default will constrain on tracking error and total CVaR. That is the volatility (tracking error) is calculated with the first variable (usually a passive portion) set to 0. Total CVaR has no treatments done to it. You can override these defaults in the method itself.



	minimize_tracking_error

	Minimizes the tracking error of the portfolio. Tracking error is calculated by setting the first variable to 0 whilst the rest are updated by the optimizer.



	minimize_volatility

	Minimizes the total portfolio volatility



	minimize_cvar

	Minimizes the conditional value at risk (expected shortfall of the portfolio)



	maximize_info_ratio

	Maximizes the information ratio of the portfolio. The information ratio of the portfolio is calculated like the Sharpe ratio. The only difference is the first variable is set to 0.



	maximize_sharpe_ratio

	Maximizes the Sharpe ratio of the portfolio.






	
class allopy.optimize.ActivePortfolioOptimizer(data, algorithm=40, cvar_data=None, rebalance=False, time_unit='quarterly', sum_to_1=False, *args, **kwargs)

	
	
__init__(data, algorithm=40, cvar_data=None, rebalance=False, time_unit='quarterly', sum_to_1=False, *args, **kwargs)

	The ActivePortfolioOptimizer houses several common pre-specified optimization routines.

ActivePortfolioOptimizer assumes that the optimization model has no uncertainty. That is, the
portfolio is expected to undergo a single fixed scenario in the future.

Notes

ActivePortfolioOptimizer is a special case of the PortfolioOptimizer where the goal is to determine
the best mix of of the portfolio relative to ba benchmark. By convention, the first asset of
the data is the benchmark returns stream. The remaining returns stream is then the over or under
performance of the returns over the benchmark. In this way, the optimization has an intuitive meaning
of allocating resources whilst taking account

For example, if you have a benchmark (beta) returns stream, 9 other asset classes over
10000 trials and 40 periods, the simulation tensor will be 40 x 10000 x 10 with the first asset
axis being the returns of the benchmark. In such a case, the active portfolio optimizer can
be used to optimize the portfolio relative to the benchmark.


	Parameters

	
	data ({ndarray, OptData}) – The data used for optimization


	algorithm ({int, string}) – The algorithm used for optimization. Default is Sequential Least Squares Programming


	cvar_data ({ndarray, OptData}) – The cvar_data data used as constraint during the optimization. If this is not set, will default to being a
copy of the original data that is trimmed to the first 3 years. If an array like object is passed in,
the data must be a 3D array with axis representing time, trials and assets respectively. In that
instance, the horizon will not be cut at 3 years, rather it’ll be left to the user.


	rebalance (bool, optional) – Whether the weights are rebalanced in every time instance. Defaults to False


	time_unit ({int, 'monthly', 'quarterly', 'semi-annually', 'yearly'}, optional) – Specifies how many units (first axis) is required to represent a year. For example, if each time period
represents a month, set this to 12. If quarterly, set to 4. Defaults to 12 which means 1 period represents
a month. Alternatively, specify one of ‘monthly’, ‘quarterly’, ‘semi-annually’ or ‘yearly’


	sum_to_1 (bool) – If False, the weights do not need to sum to 1. This should be False for active optimizer.


	args – other arguments to pass to the BaseOptimizer


	kwargs – other keyword arguments to pass into OptData (if you passed in a numpy array for data) or into
the BaseOptimizer









See also


	BaseOptimizer
	Base Optimizer



	OptData
	Optimizer data wrapper












	
maximize_eva(max_vol=None, max_cvar=None, percentile=5.0, x0=None, *, as_tracking_error=True, as_active_cvar=False, tol=0.0)

	Optimizes the expected value added of the portfolio subject to max tracking error and/or cvar constraint.
At least one of the tracking error or cvar constraint must be defined.

If max_te is defined, the tracking error will be offset by that amount. Maximum tracking error is usually
defined by a positive number. Meaning if you would like to cap tracking error to 3%, max_te should be set to
0.03.


	Parameters

	
	max_vol (float, optional) – Maximum tracking error allowed


	max_cvar (float, optional) – Maximum cvar_data allowed


	percentile (float) – The CVaR percentile value. This means to the expected shortfall will be calculated from values
below this threshold


	x0 (ndarray) – Initial vector. Starting position for free variables


	as_active_cvar (bool) – If True, the cvar constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the cvar constraint is calculated using the entire weight vector.


	as_tracking_error (bool) – If True, the volatility constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the volatility constraint is calculated using the entire weight
vector. This is also known as tracking error.


	tol (float) – A tolerance for the constraints in judging feasibility for the purposes of stopping the optimization






	Returns

	Optimal weights



	Return type

	ndarray










	
maximize_info_ratio(x0=None)

	Maximizes the information ratio the portfolio.


	Parameters

	x0 (array_like, optional) – initial vector. Starting position for free variables



	Returns

	Optimal weights



	Return type

	ndarray










	
maximize_sharpe_ratio(x0=None)

	Maximizes the Sharpe ratio the portfolio.


	Parameters

	x0 (array_like, optional) – initial vector. Starting position for free variables



	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_cvar(min_ret=None, x0=None, *, percentile=5.0, as_active_cvar=False, as_active_return=False, tol=0.0)

	Minimizes the conditional value at risk of the portfolio. The present implementation actually minimizes the
expected shortfall.

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are at least
as large as the value specified (if possible).


	Parameters

	
	min_ret (float, optional) – The minimum returns required for the portfolio


	x0 (ndarray) – Initial vector. Starting position for free variables


	percentile (float) – The CVaR percentile value for the objective. This means to the expected shortfall will be calculated
from values below this threshold


	as_active_cvar (bool, optional) – If True, minimizes the active cvar instead of the entire portfolio cvar. If False, minimizes the entire
portfolio’s cvar


	as_active_return (bool, optional) – If True, the returns constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the returns constraint is calculated using the entire weight
vector.


	tol (float) – A tolerance for the constraints in judging feasibility for the purposes of stopping the optimization






	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_tracking_error(min_ret=None, x0=None, *, as_active_return=False, tol=0.0)

	Minimizes the tracking error of the portfolio

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are
at least as large as the value specified (if possible).


	Parameters

	
	min_ret (float, optional) – The minimum returns required for the portfolio


	x0 (ndarray) – Initial vector. Starting position for free variables


	as_active_return (boolean, optional) – If True, the returns constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the returns constraint is calculated using the entire weight
vector.


	tol (float) – A tolerance for the constraints in judging feasibility for the purposes of stopping the optimization






	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_volatility(min_ret=None, x0=None, *, as_active_return=False, tol=0.0)

	Minimizes the volatility of the portfolio

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are
at least as large as the value specified (if possible).


	Parameters

	
	min_ret (float, optional) – The minimum returns required for the portfolio


	x0 (ndarray) – Initial vector. Starting position for free variables









	as_active_return: boolean, optional
	If True, the returns constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the returns constraint is calculated using the entire weight
vector.



	tol: float
	A tolerance for the constraints in judging feasibility for the purposes of stopping the optimization






	Returns

	Optimal weights



	Return type

	ndarray
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Regret Optimizer

The RegretOptimizer inherits the DiscreteUncertaintyOptimizer. The minimum regret optimization [https://en.wikipedia.org/wiki/Regret_(decision_theory)] is a technique under decision theory on making decisions under uncertainty.


	
class allopy.optimize.RegretOptimizer(num_assets, num_scenarios, prob=None, algorithm=40, c_eps=None, xtol_abs=None, xtol_rel=None, ftol_abs=None, ftol_rel=None, max_eval=None, verbose=False, sum_to_1=True, max_attempts=5)

	
	
__init__(num_assets, num_scenarios, prob=None, algorithm=40, c_eps=None, xtol_abs=None, xtol_rel=None, ftol_abs=None, ftol_rel=None, max_eval=None, verbose=False, sum_to_1=True, max_attempts=5)

	The RegretOptimizer is a convenience class for scenario based optimization.

Notes

The term regret refers to the instance where after having decided on one alternative, the choice
of a different alternative would have led to a more optimal (better) outcome when the eventual
scenario transpires.

The RegretOptimizer employs a 2 stage optimization process. In the first step, the optimizer
calculates the optimal weights for each scenario. In the second stage, the optimizer minimizes
the regret function to give the final optimal portfolio weights.

Assuming the objective is to maximize returns subject to some volatility constraints, the first
stage optimization will be as listed


\[\begin{split}\begin{gather*}
    \underset{w_s}{\max} R_s(w_s)  \forall s \in S \\
    s.t. \\
    \sigma_s(w_s) \leq \Sigma
\end{gather*}\end{split}\]

where \(R_s(\cdot)\) is the returns function for scenario \(s\), \(\sigma_s(\cdot)\)
is the volatility function for scenario \(s\) and \(\Sigma\) is the volatility threshold.
Subsequently, to minimize the regret across all scenarios, \(S\),


\[\begin{gather*}
    \underset{w}{\min} \sum_{s \in S} p_s \cdot D(R_s(w_s) - R_s(w))
\end{gather*}\]

Where \(D(\cdot)\) is a distance function (usually quadratic) and \(p_s\) is the discrete
probability of scenario \(s\) occurring.


	Parameters

	
	num_assets (int) – Number of assets


	num_scenarios (int) – Number of scenarios


	prob (Union[Iterable[float], Iterable[int], ndarray, None]) – Vector containing probability of each scenario occurring


	algorithm – The optimization algorithm. Default algorithm is Sequential Least Squares Quadratic Programming.


	c_eps (float, optional) – Constraint epsilon is the tolerance for the inequality and equality constraints functions. Any
value that is less than the constraint epsilon is considered to be within the boundary.


	xtol_abs (float or np.ndarray, optional) – Set absolute tolerances on optimization parameters. tol is an array giving the
tolerances: stop when an optimization step (or an estimate of the optimum) changes every
parameter x[i] by less than tol[i]. For convenience, if a scalar tol
is given, it will be used to set the absolute tolerances in all n optimization parameters to
the same value. Criterion is disabled if tol is non-positive.


	xtol_rel (float or np.ndarray, optional) – Set relative tolerance on optimization parameters: stop when an optimization step (or an estimate
of the optimum) causes a relative change the parameters x by less than tol,
i.e. \(\|\Delta x\|_w < tol \cdot \|x\|_w\) measured by a weighted \(L_1\) norm
\(\|x\|_w = \sum_i w_i |x_i|\), where the weights \(w_i\) default to 1. (If there is
any chance that the optimal \(\|x\|\) is close to zero, you might want to set an absolute
tolerance with code:`xtol_abs as well.) Criterion is disabled if tol is non-positive.


	ftol_abs (float, optional) – Set absolute tolerance on function value: stop when an optimization step (or an estimate of
the optimum) changes the function value by less than tol. Criterion is disabled if
tol is non-positive.


	ftol_rel (float, optional) – Set relative tolerance on function value: stop when an optimization step (or an estimate of
the optimum) changes the objective function value by less than tol multiplied by the
absolute value of the function value. (If there is any chance that your optimum function value
is close to zero, you might want to set an absolute tolerance with ftol_abs as well.)
Criterion is disabled if tol is non-positive.


	max_eval (int, optional) – Stop when the number of function evaluations exceeds maxeval. (This is not a strict
maximum: the number of function evaluations may exceed maxeval slightly, depending
upon the algorithm.) Criterion is disabled if maxeval is non-positive.


	verbose (bool) – If True, the optimizer will report its operations


	sum_to_1 (bool) – If true, the optimal weights for each first level scenario must sum to 1.


	max_attempts (int) – Number of times to retry optimization. This is useful when optimization is in a highly unstable
or non-convex space.









See also


	DiscreteUncertaintyOptimizer
	Discrete Uncertainty Optimizer












	
add_equality_constraint(functions)

	Adds the equality constraint function in standard form, A = b. If the gradient of the constraint function
is not specified and the algorithm used is a gradient-based one, the optimizer will attempt to insert a smart
numerical gradient for it.

The list of functions needs to match the number of scenarios. The function at index 0 will be assigned as
a constraint function to the first optimization regime.


	Parameters

	functions (Callable or List of Callable) – Constraint function. The function signature should be such that the first argument takes in a weight
vector and outputs a numeric (float). The second argument is optional and contains the gradient. If
given, the user must put adjust the gradients inplace. If only a single function is given, the same
function will be used for all the scenarios










	
add_equality_matrix_constraint(Aeq, beq)

	Sets equality constraints in standard matrix form.

For equality, \(\mathbf{A} \cdot \mathbf{x} = \mathbf{b}\)


	Parameters

	
	Aeq ({iterable float, ndarray}) – Equality matrix. Must be 2 dimensional


	beq ({scalar, ndarray}) – Equality vector or scalar. If scalar, it will be propagated













	
add_inequality_constraint(functions)

	Adds the equality constraint function in standard form, A <= b. If the gradient of the constraint function is
not specified and the algorithm used is a gradient-based one, the optimizer will attempt to insert a smart
numerical gradient for it.

The list of functions needs to match the number of scenarios. The function at index 0 will be assigned as
a constraint function to the first optimization regime.


	Parameters

	functions (Callable or List of Callable) – Constraint functions. The function signature should be such that the first argument takes in a weight
vector and outputs a numeric (float). The second argument is optional and contains the gradient. If
given, the user must put adjust the gradients inplace. If only a single function is given, the same
function will be used for all the scenarios










	
add_inequality_matrix_constraint(A, b)

	Sets inequality constraints in standard matrix form.

For inequality, \(\mathbf{A} \cdot \mathbf{x} \leq \mathbf{b}\)


	Parameters

	
	A ({iterable float, ndarray}) – Inequality matrix. Must be 2 dimensional.


	b ({scalar, ndarray}) – Inequality vector or scalar. If scalar, it will be propagated.













	
property lower_bounds

	Lower bound of each variable for all the optimization models in the first and second stages






	
optimize(x0_first_level=None, x0_prop=None, initial_solution='random', approx=True, dist_func=<ufunc 'square'>, random_state=None)

	Finds the minimal regret solution across the range of scenarios

Notes

The exact (actual) objective function to minimize regret is given below,


\[\begin{gather*}
    \underset{w}{\min} \sum_{s \in S} p_s \cdot D(R_s(w_s) - R_s(w))
\end{gather*}\]

However, given certain problem formulations where the objective and constraint functions are
linear and convex, the problem can be transformed to


\[\begin{gather*}
    \underset{a}{\min} \sum_{s \in S} p_s \cdot D(R_s(w_s) - R_s(W \cdot a))
\end{gather*}\]

where \(W\) is a matrix where each rows represents a single scenario, \(s\) and each
column represents an asset class. This formulation solves for \(a\) which represents the
proportion of each scenario that contributes to the final portfolio weights. Thus if there are
3 scenarios and \(a\) is [0.3, 0.5, 0.2], it means that the final portfolio took
30% from scenario 1, 50% from scenario 2 and 20% from scenario 3.

This formulation makes a strong assumption that the final minimal regret portfolio is a linear
combination of the weights from each scenario’s optimal.

The following lists the options for finding an initial solution for the optimization problem. It is best if
the user supplies an initial value instead of using the heuristics provided if the user already knows the
region to search.


	random
	Randomly generates “bound-feasible” starting points for the decision variables. Note
that these variables may not fulfil the other constraints. For problems where the bounds have been
tightly defined, this often yields a good solution.



	min_constraint_norm
	Solves the optimization problem listed below. The objective is to minimize the \(L_2\) norm of the
constraint functions while keeping the decision variables bounded by the original problem’s bounds.


\[\begin{split}\min | constraint |^2 \\
s.t. \\
LB \leq x \leq UB\end{split}\]






	Parameters

	
	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied. See notes on
Initial Solution for more information


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal. See Notes.


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	random_state (int, optional) – Random seed. Applicable if initial_solution is “random”






	Returns

	Regret optimal solution weights



	Return type

	np.ndarray










	
property prob

	Vector containing probability of each scenario occurring






	
set_bounds(lb, ub)

	Sets the lower and upper bound


	Parameters

	
	lb ({int, float, ndarray}) – Vector of lower bounds. If array, must be same length as number of free variables. If float or
int, value will be propagated to all variables.


	ub ({int, float, ndarray}) – Vector of upper bounds. If array, must be same length as number of free variables. If float or
int, value will be propagated to all variables.













	
set_epsilon_constraint(eps)

	Sets the tolerance for the constraint functions


	Parameters

	eps (float) – Tolerance










	
set_ftol_abs(tol)

	Set absolute tolerance on objective function value.

The absolute tolerance on function value: stop when an optimization step (or an estimate of
the optimum) changes the function value by less than tol. Criterion is disabled if
tol is non-positive.


	Parameters

	tol (float) – absolute tolerance of objective function value










	
set_ftol_rel(tol)

	Set relative tolerance on objective function value.

Set relative tolerance on function value: stop when an optimization step (or an estimate of
the optimum) changes the objective function value by less than tol multiplied by the
absolute value of the function value. (If there is any chance that your optimum function value
is close to zero, you might want to set an absolute tolerance with ftol_abs as well.)
Criterion is disabled if tol is non-positive.


	Parameters

	tol (float, optional) – Absolute relative of objective function value










	
set_max_objective(functions)

	Sets the optimizer to maximize the objective function. If gradient of the objective function is not set and the
algorithm used to optimize is gradient-based, the optimizer will attempt to insert a smart numerical gradient
for it.

The list of functions needs to match the number of scenarios. The function at index 0 will be assigned as
the objective function to the first optimization regime.


	Parameters

	functions (Callable or List of Callable) – Objective function. The function signature should be such that the first argument takes in a weight
vector and outputs a numeric (float). The second argument is optional and contains the gradient. If
given, the user must put adjust the gradients inplace. If only a single function is given, the same
function will be used for all the scenarios










	
set_maxeval(n)

	Sets maximum number of objective function evaluations.

Stop when the number of function evaluations exceeds maxeval. (This is not a strict
maximum: the number of function evaluations may exceed maxeval slightly, depending
upon the algorithm.) Criterion is disabled if maxeval is non-positive.


	Parameters

	n (int) – maximum number of evaluations










	
set_meta(*, assets=None, scenarios=None)

	Sets meta data which will be used for result summary


	Parameters

	
	assets (list of str, optional) – Names of each asset class


	scenarios (list of str, optional) – Names of each scenario













	
set_min_objective(functions)

	Sets the optimizer to minimize the objective function. If gradient of the objective function is not set and the
algorithm used to optimize is gradient-based, the optimizer will attempt to insert a smart numerical gradient
for it.

The list of functions needs to match the number of scenarios. The function at index 0 will be assigned as
the objective function to the first optimization regime.


	Parameters

	functions (Callable or List of Callable) – Objective function. The function signature should be such that the first argument takes in a weight
vector and outputs a numeric (float). The second argument is optional and contains the gradient. If
given, the user must put adjust the gradients inplace. If only a single function is given, the same
function will be used for all the scenarios










	
set_xtol_abs(tol)

	Sets absolute tolerances on optimization parameters.

The absolute tolerances on optimization parameters. tol is an array giving the
tolerances: stop when an optimization step (or an estimate of the optimum) changes every
parameter x[i] by less than tol[i]. For convenience, if a scalar tol
is given, it will be used to set the absolute tolerances in all n optimization parameters to
the same value. Criterion is disabled if tol is non-positive.


	Parameters

	tol (float or np.ndarray) – Absolute tolerance for each of the free variables










	
set_xtol_rel(tol)

	Sets relative tolerances on optimization parameters.

Set relative tolerance on optimization parameters: stop when an optimization step (or an estimate
of the optimum) causes a relative change the parameters x by less than tol,
i.e. \(\|\Delta x\|_w < tol \cdot \|x\|_w\) measured by a weighted \(L_1\) norm
\(\|x\|_w = \sum_i w_i |x_i|\), where the weights \(w_i\) default to 1. (If there is
any chance that the optimal \(\|x\|\) is close to zero, you might want to set an absolute
tolerance with code:`xtol_abs as well.) Criterion is disabled if tol is non-positive.


	Parameters

	tol (float or np.ndarray) – relative tolerance for each of the free variables










	
property upper_bounds

	Upper bound of each variable for all the optimization models in the first and second stages
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Portfolio Regret Optimizer

The PortfolioRegretOptimizer inherits the RegretOptimizer. The minimum regret optimization [https://en.wikipedia.org/wiki/Regret_(decision_theory)] is a technique under decision theory on making decisions under uncertainty.

The methods in the PortfolioRegretOptimizer are only applied at the first stage of the procedure. The PortfolioRegretOptimizer houses the following convenience methods:


	maximize_returns

	Maximize the returns of the portfolio. You may put in volatility or CVaR constraints for this procedure.



	minimize_volatility

	Minimizes the total portfolio volatility



	minimize_cvar

	Minimizes the conditional value at risk (expected shortfall of the portfolio)



	maximize_sharpe_ratio

	Maximizes the Sharpe ratio of the portfolio.






	
class allopy.optimize.PortfolioRegretOptimizer(data, cvar_data=None, prob=None, rebalance=True, sum_to_1=True, time_unit='quarterly', **kwargs)

	
	
__init__(data, cvar_data=None, prob=None, rebalance=True, sum_to_1=True, time_unit='quarterly', **kwargs)

	PortfolioRegretOptimizer houses several common pre-specified regret optimization routines. Regret optimization
is a scenario based optimization.

Notes

The term regret refers to the instance where after having decided on one alternative, the choice
of a different alternative would have led to a more optimal (better) outcome when the eventual
scenario transpires.

The RegretOptimizer employs a 2 stage optimization process. In the first step, the optimizer
calculates the optimal weights for each scenario. In the second stage, the optimizer minimizes
the regret function to give the final optimal portfolio weights.

Assuming the objective is to maximize returns subject to some volatility constraints, the first
stage optimization will be as listed


\[\begin{split}\begin{gather*}
    \underset{w_s}{\max} R_s(w_s)  \forall s \in S \\
    s.t. \\
    \sigma_s(w_s) \leq \Sigma
\end{gather*}\end{split}\]

where \(R_s(\cdot)\) is the returns function for scenario \(s\), \(\sigma_s(\cdot)\)
is the volatility function for scenario \(s\) and \(\Sigma\) is the volatility threshold.
Subsequently, to minimize the regret across all scenarios, \(S\),


\[\begin{gather*}
    \underset{w}{\min} \sum_{s \in S} p_s \cdot D(R_s(w_s) - R_s(w))
\end{gather*}\]

Where \(D(\cdot)\) is a distance function (usually quadratic) and \(p_s\) is the discrete
probability of scenario \(s\) occurring.


	Parameters

	
	data (List[Union[OptData, ndarray]]) – Scenario data. Each data must be a 3 dimensional tensor. Thus data will be a 4-D tensor.


	cvar_data (optional) – CVaR scenario data. Each data must be a 3 dimensional tensor. Thus data will be a 4-D tensor.


	prob (Union[Iterable[float], Iterable[int], ndarray, None]) – Vector containing probability of each scenario occurring


	rebalance (bool, optional) – Whether the weights are rebalanced in every time instance. Defaults to True


	sum_to_1 – If True, portfolio weights must sum to 1. Defaults to True


	time_unit ({int, 'monthly', 'quarterly', 'semi-annually', 'yearly'}, optional) – Specifies how many units (first axis) is required to represent a year. For example, if each time period
represents a month, set this to 12. If quarterly, set to 4. Defaults to 12 which means 1 period represents
a month. Alternatively, specify one of ‘monthly’, ‘quarterly’, ‘semi-annually’ or ‘yearly’


	kwargs – Other keyword arguments to pass to the RegretOptimizer base class









See also


	RegretOptimizer
	RegretOptimizer












	
maximize_returns(max_vol=None, max_cvar=None, percentile=5.0, *, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Optimizes the expected returns of the portfolio subject to max volatility and/or cvar constraint.
At least one of the tracking error or cvar constraint must be defined.

If max_vol is defined, the tracking error will be offset by that amount. Maximum tracking error is usually
defined by a positive number. Meaning if you would like to cap tracking error to 3%, max_te should be set to
0.03.


	Parameters

	
	max_vol (float or list of floats, optional) – Maximum tracking error allowed. If a scalar, the same value will be used for each scenario
optimization.


	max_cvar (float or list of floats, optional) – Maximum cvar_data allowed. If a scalar, the same value will be used for each scenario optimization.


	percentile (float) – The CVaR percentile value. This means to the expected shortfall will be calculated from values
below this threshold


	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None













	
maximize_sharpe_ratio(*, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Maximizes the sharpe ratio the portfolio.


	Parameters

	
	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_cvar(min_ret=None, percentile=5.0, *, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Minimizes the conditional value at risk of the portfolio. The present implementation actually minimizes the
expected shortfall.

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are at least
as large as the value specified (if possible).


	Parameters

	
	min_ret (float or list of floats, optional) – The minimum returns required for the portfolio. If a scalar, the same value will be used for each
scenario optimization.


	percentile (float) – The CVaR percentile value for the objective. This is the average expected shortfall from values below
this threshold


	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_volatility(min_ret=None, *, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Minimizes the tracking error of the portfolio

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are
at least as large as the value specified (if possible).


	Parameters

	
	min_ret (float or list of floats, optional) – The minimum returns required for the portfolio. If a scalar, the same value will be used for each
scenario optimization.


	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None
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Acitve Portfolio Regret Optimizer

The ActivePortfolioRegretOptimizer inherits the RegretOptimizer. The minimum regret optimization [https://en.wikipedia.org/wiki/Regret_(decision_theory)] is a technique under decision theory on making decisions under uncertainty.

The methods in the ActivePortfolioRegretOptimizer are only applied at the first stage of the procedure. ActivePortfolioRegretOptimizer houses the following convenience methods:


	maximize_eva

	Maximize the expected value added of the portfolio. The objective function is the same with maximize returns as it just maximizes the total returns. For risk constraints, this method by default will constrain on tracking error and total CVaR. That is the volatility (tracking error) is calculated with the first variable (usually a passive portion) set to 0. Total CVaR has no treatments done to it. You can override these defaults in the method itself.



	minimize_tracking_error

	Minimizes the tracking error of the portfolio. Tracking error is calculated by setting the first variable to 0 whilst the rest are updated by the optimizer.



	minimize_volatility

	Minimizes the total portfolio volatility



	minimize_cvar

	Minimizes the conditional value at risk (expected shortfall of the portfolio)



	maximize_info_ratio

	Maximizes the information ratio of the portfolio. The information ratio of the portfolio is calculated like the Sharpe ratio. The only difference is the first variable is set to 0.



	maximize_sharpe_ratio

	Maximizes the Sharpe ratio of the portfolio.






	
class allopy.optimize.ActivePortfolioRegretOptimizer(data, cvar_data=None, prob=None, rebalance=False, sum_to_1=False, time_unit='quarterly', **kwargs)

	
	
__init__(data, cvar_data=None, prob=None, rebalance=False, sum_to_1=False, time_unit='quarterly', **kwargs)

	PortfolioRegretOptimizer houses several common pre-specified regret optimization routines. Regret optimization
is a scenario based optimization.

Notes

The term regret refers to the instance where after having decided on one alternative, the choice
of a different alternative would have led to a more optimal (better) outcome when the eventual
scenario transpires.

The RegretOptimizer employs a 2 stage optimization process. In the first step, the optimizer
calculates the optimal weights for each scenario. In the second stage, the optimizer minimizes
the regret function to give the final optimal portfolio weights.

Assuming the objective is to maximize returns subject to some volatility constraints, the first
stage optimization will be as listed


\[\begin{split}\begin{gather*}
    \underset{w_s}{\max} R_s(w_s)  \forall s \in S \\
    s.t. \\
    \sigma_s(w_s) \leq \Sigma
\end{gather*}\end{split}\]

where \(R_s(\cdot)\) is the returns function for scenario \(s\), \(\sigma_s(\cdot)\)
is the volatility function for scenario \(s\) and \(\Sigma\) is the volatility threshold.
Subsequently, to minimize the regret across all scenarios, \(S\),


\[\begin{gather*}
    \underset{w}{\min} \sum_{s \in S} p_s \cdot D(R_s(w_s) - R_s(w))
\end{gather*}\]

Where \(D(\cdot)\) is a distance function (usually quadratic) and \(p_s\) is the discrete
probability of scenario \(s\) occurring.


	Parameters

	
	data (List[Union[OptData, ndarray]]) – Scenario data. Each data must be a 3 dimensional tensor. Thus data will be a 4-D tensor.


	cvar_data (optional) – CVaR scenario data. Each data must be a 3 dimensional tensor. Thus data will be a 4-D tensor.


	prob (Union[Iterable[float], Iterable[int], ndarray, None]) – Vector containing probability of each scenario occurring


	rebalance (bool, optional) – Whether the weights are rebalanced in every time instance. Defaults to False


	sum_to_1 – If True, portfolio weights must sum to 1. Defaults to False


	time_unit ({int, 'monthly', 'quarterly', 'semi-annually', 'yearly'}, optional) – Specifies how many units (first axis) is required to represent a year. For example, if each time period
represents a month, set this to 12. If quarterly, set to 4. Defaults to 12 which means 1 period represents
a month. Alternatively, specify one of ‘monthly’, ‘quarterly’, ‘semi-annually’ or ‘yearly’


	kwargs – Other keyword arguments to pass to the RegretOptimizer base class









See also


	RegretOptimizer
	RegretOptimizer












	
maximize_eva(max_vol=None, max_cvar=None, percentile=5.0, *, as_tracking_error=True, as_active_cvar=False, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Optimizes the expected value added of the actively managed portfolio subject to max volatility
and/or cvar constraint. At least one of the tracking error or cvar constraint must be defined.

If max_vol is defined, the tracking error will be offset by that amount. Maximum tracking error is usually
defined by a positive number. Meaning if you would like to cap tracking error to 3%, max_te should be set to
0.03.


	Parameters

	
	max_vol (float or list of floats, optional) – Maximum tracking error allowed. If a scalar, the same value will be used for each scenario
optimization.


	max_cvar (float or list of floats, optional) – Maximum cvar_data allowed. If a scalar, the same value will be used for each scenario optimization.


	percentile (float) – The CVaR percentile value. This means to the expected shortfall will be calculated from values
below this threshold


	as_active_cvar (bool) – If True, the cvar constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the cvar constraint is calculated using the entire weight vector.


	as_tracking_error (bool) – If True, the volatility constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the volatility constraint is calculated using the entire weight
vector. This is also known as tracking error.


	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None













	
maximize_info_ratio(*, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Maximizes the information ratio the portfolio.


	Parameters

	
	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray










	
maximize_sharpe_ratio(*, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Maximizes the sharpe ratio the portfolio.


	Parameters

	
	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_cvar(min_ret=None, percentile=5.0, *, as_active_cvar=False, as_active_return=False, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Minimizes the conditional value at risk of the portfolio. The present implementation actually minimizes the
expected shortfall.

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are at least
as large as the value specified (if possible).


	Parameters

	
	min_ret (float or list of floats, optional) – The minimum returns required for the portfolio. If a scalar, the same value will be used for each
scenario optimization.


	percentile (float) – The CVaR percentile value for the objective. This is the average expected shortfall from values below
this threshold


	as_active_cvar (bool, optional) – If True, minimizes the active cvar instead of the entire portfolio cvar. If False, minimizes the entire
portfolio’s cvar


	as_active_return (bool, optional) – If True, the returns constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the returns constraint is calculated using the entire weight
vector.


	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None






	Returns

	Optimal weights



	Return type

	ndarray










	
minimize_tracking_error(min_ret=None, *, as_active_return=False, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Minimizes the tracking error of the portfolio

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are
at least as large as the value specified (if possible).


	Parameters

	
	min_ret (float or list of floats, optional) – The minimum returns required for the portfolio. If a scalar, the same value will be used for each
scenario optimization.


	as_active_return (boolean, optional) – If True, the returns constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the returns constraint is calculated using the entire weight
vector.


	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None













	
minimize_volatility(min_ret=None, *, as_active_return=False, x0_first_level=None, x0_prop=None, approx=True, dist_func=<ufunc 'square'>, initial_solution='random', random_state=None)

	Minimizes the volatility of the portfolio

If the min_ret is specified, the optimizer will search for an optimal portfolio where the returns are
at least as large as the value specified (if possible).


	Parameters

	
	min_ret (float or list of floats, optional) – The minimum returns required for the portfolio. If a scalar, the same value will be used for each
scenario optimization.


	as_active_return (boolean, optional) – If True, the returns constraint is calculated using the active portion of the weights. That is, the
first value is forced to 0. If False, the returns constraint is calculated using the entire weight
vector.


	x0_first_level (list of list of floats or ndarray, optional) – List of initial solution vector for each scenario optimization. If provided, the list must have the
same length at the first dimension as the number of solutions.


	x0_prop (list of floats, optional) – Initial solution vector for the regret optimization (2nd level). This can either be the final
optimization weights if approx is False or the scenario proportion otherwise.


	approx (bool) – If True, a linear approximation will be used to calculate the regret optimal


	dist_func (Callable) – A callable function that will be applied as a distance metric for the regret function. The
default is a quadratic function. See Notes.


	initial_solution (str, optional) – The method to find the initial solution if the initial vector x0 is not specified. Set as
None to disable. However, if disabled, the initial vector must be supplied.


	random_state (int, optional) – Random seed. Applicable if initial_solution is not None
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Penalty

The penalties are classes that are added to the Portfolio Optimizer family of optimizers (i.e. PortfolioOptimizer, ActivePortfolioOptimizer) to impose a penalty to the particular asset weight based on the amount of uncertainty present for that asset class.

Uncertainty in this instance does not mean the risk (or variance). Rather, it signifies how uncertain we are of those estimates. For example, it represents how uncertain we are of the returns (mean) and volatility (standard deviation) estimates we have projected for the asset class.


Penalty Classes


	NoPenalty

	UncertaintyPenalty
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NoPenalty


	
class allopy.penalty.NoPenalty(dim)

	
	
__init__(dim)

	No penalty is a no-op penalty function. Essentially it applies no penalty to the objective function
when applied to the objective function.


	Parameters

	dim (int) – Number of assets










	
cost(_)

	Calculates the penalty to apply


\[p(w) = 0\]


	Return type

	float
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UncertaintyPenalty


	
class allopy.penalty.UncertaintyPenalty(uncertainty, alpha=0.95, method='direct', dim=None)

	
	
__init__(uncertainty, alpha=0.95, method='direct', dim=None)

	The uncertainty penalty. It penalizes the objective function relative to the level of uncertainty for the
given asset

Notes

Given an initial maximizing objective, this penalty will change the objective to


\[f(w) - \lambda \sqrt{w^T \Phi w}\]

where \(\Phi\) represent the uncertainty matrix. \(\lambda = 0\) or a 0-matrix is a special case
where there are no uncertainty in the projections.

If using \(\chi^2\) method, the \(\lambda\) value is given by


\[\lambda = \frac{1}{\chi^2_{n - 1}(\alpha)}\]

where \(n\) is the number of asset classes and \(\alpha\) is the confidence interval. Otherwise
the “direct” method will have \(\lambda = \alpha\).


	Parameters

	
	uncertainty (Union[Iterable[Union[int, float]], ndarray]) – A 1D vector or 2D matrix representing the uncertainty for the given asset class. If a 1D vector is
provided, it will be converted to a diagonal matrix


	alpha (float) – A constant controlling the intensity of the penalty


	method ("chi2" or "direct") – Method used to construct the lambda parameter. If “direct”, the exact value specified by the alpha
parameter is used. If “chi2”, the value is determined using the inverse of the chi-square quantile
function. In that instance, the alpha parameter will be the confidence level. See Notes.


	dim (int) – If provided, it will override the default dimension of the penalty which is determined by the
length of the uncertainty vector/matrix provided













	
cost(w)

	Calculates the penalty to apply


\[p(w) = \lambda \sqrt{w^T \Phi w}\]


	Return type

	float
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Datasets

To aid development, the allopy package houses a few test dataset. The data could be large so they will be
downloaded for the first time you request them and saved in your home folder.


Load Index


	
allopy.datasets.load_index(*, download=False)

	Dataset contains the index value of 7 asset classes from 01 Jan 1985 to 01 Oct 2017.

This dataset is usually used only for demonstration purposes. As such, the values have been
fudged slightly.


	Parameters

	download (bool) – If True, forces the data to be downloaded again from the repository. Otherwise, loads the data from the
stash folder



	Returns

	A data frame containing the index of the 7 policy asset classes



	Return type

	DataFrame












Load Monte Carlo


	
allopy.datasets.load_monte_carlo(*, download=False, total=False)

	Loads a data set containing a mock Monte Carlo simulation of asset class returns.

The Monte Carlo tensor has axis represents time, trials and asset respectively. For the
non-total cube, the shape is 80 x 10000 x 9 meaning there are 80 time periods over
10000 trials and 9 asset classes.

The total Monte Carlo tensor’s shape is 60 x 10000 x 36


	Parameters

	
	download (bool) – If True, forces the data to be downloaded again from the repository. Otherwise, loads the data from the
stash folder


	total (bool) – If True, loads the monte carlo simulation with the total set of asset classes to simulate a big portfolio






	Returns

	A Monte Carlo tensor



	Return type

	ndarray
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